769. Molecular Polarisability: The Conformations of Some Simple Carboxylic Esters as Solutes.

By R. J. W. Le Fèvre and (Mrs.) A. Sundaram.

The dipole moments, molar Kerr constants, etc., are recorded for methyl formate, chloroformate, acetate, propionate, isobutyrate, benzoate, and phthalate in benzene, for ethyl acetate in carbon tetrachloride, for dimethyl oxalate in dioxan, and for phenyl benzoate in benzene. Polarity and polarisability considerations indicate that in all cases the $\mathrm{CO}_{2} \mathrm{R}$ group is non-planar, and that the assumption of a 30° rotation of the $\mathrm{C}-\mathrm{O}-\mathrm{R}$ triangle about the (CO)-O bond usually quantitatively reconciles a priori calculations with observations. Thus esters are probably conformationally similar as solutes and as gases.

During the last thirty years the stereo-structures of simple carboxylic esters have been investigated by many established physical methods, e.g., dipole moments, ${ }^{1-4}$ electron diffraction, ${ }^{5,6} X$-rays, ${ }^{7}$ and microwave ${ }^{8}$ and infrared absorption spectroscopy. ${ }^{9,10}$ In general, the group CO•OR has been accepted as having the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{C}_{\text {alkyl }}$ bonds disposed in an s-cis relationship which is only slightly affected by temperature changes. ${ }^{3}$ The methoxycarbonyl groups are stated ${ }^{7}$ to be fully planar in crystalline dimethyl oxalate, but for gaseous methyl formate, chloroformate, and acetate deviations from the flat cisconformations have been noted. ${ }^{11,12}$ In terms of the rotation of the C-O-Alkyl triangle about the $\mathrm{C}-\mathrm{O}$ bond, Smyth ${ }^{13}$ has pointed out that with usual link moments and molecular geometry a departure of 30° still permits calculation of a molecular resultant of 1.8 D for methyl acetate, in satisfactory agreement with the value from experiment; by

[^0]Table 1.
Incremental values of $\Delta n, \Delta n^{2}, \Delta d, \Delta \varepsilon$, and ΔB for solutions in benzene at 25°.

$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta n^{2}$	$10^{5} \Delta$	$10^{4} \Delta \varepsilon$	$10^{10} \Delta B$
Solute: Methyl chloroformate					
870	-8	-25	207	545	48
1248	-12	-38	299	774	67
1877	-17	-53	447	1166	103
2014		-		1234	
2180	-20	-63	521	1338	120
2853	-	-	-	-	158
3001	-	-	-		168
3006	-	-	-	-	170
3367					189
3600	-34	-106	864	2224	202
3756	-	-	-	2324	
4659					269
4980	-46	-144	1184	3104	289
5210					304

whence $\Sigma \Delta n / \Sigma w_{2}=-0.093 ; \Sigma \Delta n^{2} / \sum w_{2}=-0.291$;
$\Sigma \Delta d / \Sigma w_{2}=0.2387 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=6 \cdot 19$;
$10^{7} \Delta B=5 \cdot 27 w_{2}+10 \cdot 61 w_{2}{ }^{2}$.

Solute: Methyl acetate					
5436	-82	-246	180	2447	121
6436	-96	-288	212	2884	145
7500	-113	-339	237	3397	180
8644	-129	-386	277	3878	200
10,434	-155	-464	341	4688	218
11,513	-170	-509	378	5157	262

1903	-	-	-	-	36
3001	-	-	-	-	56
3935	-51	-154	131	1440	69
4442	-58	-175	148	1543	80
6527	-83	-250	201	2268	118
8199	-103	-310	255	2837	146
9378	-119	-358	282	3213	-
11,734	-148	-444	377	4025	-

whence $\Sigma \Delta n / \sum w_{2}=-0 \cdot 127 ; \Sigma \Delta n^{2} / \Sigma w_{2}=-0.382$; $\Sigma \Delta d / \Sigma w_{2}=0.0316 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=3.47 ;$ $\Sigma \Delta B / \Sigma w_{2}=1 \cdot 80_{3} \times 10^{-7}$.
whence $\Sigma \Delta n / \Sigma w_{2}=-0.149 ; \Sigma \Delta n^{2} / \Sigma w_{2}=-0.447$;
$\Sigma \Delta d / \sum w_{2}=0.0326 ; \Sigma \Delta \varepsilon / \sum w_{2}=4.50 ;$ $\Sigma \Delta B / \Sigma w_{2}=2 \cdot 25_{5} \times 10^{-7}$.

Solute: Methyl isobutyrate					
1468	-20	-61	234	452	-
2874	-39	-118	283	882	34
4307	-57	-172	525	1326	49
5445	-74	-223	630	1677	53
6731	-90	-271	815	2062	76
7945	-105	-316	912	2426	93

whence $\Sigma \Delta n / \Sigma w_{2}=-0.134 ; \Sigma \Delta n^{2} / \Sigma w_{2}=-0.404$; $\Sigma \Delta d / \Sigma w_{2}=0.0118 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=3.07 ;$ $\Sigma \Delta B / \Sigma w_{2}=1.12 \times 10^{-7}$.

Solute: Dimethyl phthalate

906	5	15	202	417	11
1245	7	21	319	561	17
1823	10	30	438	856	20
2116	11	33	459	961	25
2582	14	42	623	1136	34
2814	16	48	671	1282	37

whence $\Sigma \Delta n / \Sigma w_{2}=0.055 ; \Sigma \Delta n^{2} / \sum w_{2}=0.165$; $\Sigma \Delta d / \sum w_{2}=0.2361 ; \Sigma \Delta \varepsilon / \sum w_{2}=4.54 ;$ $\Sigma \Delta B / \Sigma w_{2}=1.25 \times 10^{-7}$.

Solute: Dimethyl oxalate. Solvent: Dioxan

384	-	-	58	216	8
534	-	-	80	319	10
782	-	-	135	434	17
1176	-1	-3	188	685	26
1502	-	-	230	843	31
1826	-	-	274	1013	36
2121	-2	-6	297	1198	45
2214	-	-	-	1273	49
3206	-3	-9	-	-	-
4490	-4	-12	-	-	-

whence $\Sigma \Delta n / \Sigma w_{2}=-0.009 ; \Sigma \Delta n^{2} / \Sigma w_{2}=-0.027$; $\Sigma \Delta d / \sum w_{2}=0.1520 ; \quad \Sigma \Delta \varepsilon / \sum w_{2}=5.68 ;$ $\Sigma \Delta B / \Sigma w_{2}=2.11 \times 10^{-7}$.

Solute: Methyl benzoate

1024	-	-	-	-	31
1611	-	-	-	-	56
2476	2	6	418	696	87
3114	-	-	542	850	118
4068	3	9	708	1134	140
5111	-	-	910	1438	185
6274	5	15	1039	1737	236
6875	-	-	1210	1918	251
9899	8	24	-	-	-
13,242	10	30	-	-	-
16,875	14	42	-	-	-
19,006	15	45	-	-	

whence $\Sigma \Delta n / \Sigma w_{2}=0.008 ; \Sigma \Delta n^{2} / \Sigma w_{2}=0.024$;
$\Sigma \Delta d / \sum w_{2}=0.1729 ; ~ \Sigma \Delta \varepsilon / \sum w_{2}=2.78 ;$ $\Sigma \Delta B / \Sigma w_{2}=3.61 \times 10^{-7}$.

2026	11	33	418	448	45
3049	17	51	647	671	77
4105	22	66	857	889	88
5254	28	84	1109	1140	94
6555	36	108	1360	1442	145
7634	40	120	1603	1670	164

whence $\sum \Delta n / \sum w_{2}=0.054 ; \quad \sum \Delta n^{2} / \sum w_{2}=0.162$; $\Sigma \Delta d / \sum w_{2}=0.2094 ; \Sigma \Delta \varepsilon / \sum w_{2}=2 \cdot 19 ;$ $\Sigma \Delta B / \Sigma w_{2}=2.14 \times 10^{-7}$.

Solute: Ethyl acetate. Solvent: Carbon tetrachloride

2700	-43	-126	-3279	1875	62
4219	-64	-188	-5052	2939	94
6225	-93	-279	-7344	4273	136
7811	-119	-348	-9098	5289	181
11,094	-163	-476	$-12,581$	7339	229
12,599	-182	-531	$-14,136$	8973	300
whence $\Delta n=-0.158 w_{2}+0.128 w_{2}{ }^{2} ;$					
$\Delta n^{2}=$	$=0.477 w_{2}+0.450 w_{2}{ }^{2} ;$				
$\Delta d=-1.2345 w_{2}+0.0902 w_{2}{ }^{2} ;$					
$\Sigma \Delta \varepsilon / \Sigma w_{2}$	$=6.87 ; \Sigma \Delta B / \Sigma w_{2}=2 \cdot 24 \times 10^{-7}$.				

electron diffraction ${ }^{11,12}$ this angle has been estimated as 25° in methyl acetate and formate, and as 20° in methyl chloroformate (with limits for the averages of $0-35^{\circ}, 0-40^{\circ}$, and $0-30^{\circ}$, respectively). The dipole moments of esters as vapours and as solutes in benzene are almost the same (cf. p. 304 of ref. 13), and similarities of conformation in the two states seem thereby indicated; however, Smyth's discussion ${ }^{13}$ suggests that polarity might be too insensitive a property from which properly to draw such a conclusion. By contrast, measurements ${ }^{14}$ dependent on the anisotropy of molecular polarisability are very suitable for the purpose, as many examples ${ }^{\mathbf{1 5}}$ have shown. Accordingly we have examined the molar Kerr constants, dielectric polarisations, etc., at infinite dilution in non-polar media, of the ten esters listed in the Tables below. Of these, the first three present only the problem mentioned above; the remainder, having further possibilities of rotational isomerism, raise additional questions. Certain esters (azodiformates, maleates, fumarates, etc.,16 vinyl acetate, ${ }^{17}$ the mono- and di-acetoxy- and -ethoxycarbonyl-benzenes ${ }^{18}$) have previously been studied in these laboratories; except with vinyl acetate, the $\mathrm{CO}_{2} \mathrm{R}$ groups were regarded as approximately planar. In the light of present results some of the earlier conclusions require amendment in minor details.

Expfrimental

Materials.-Commercial samples of the esters were purified as described elsewhere; ${ }^{19}$ methyl isobutyrate was prepared by Vogel's procedure. ${ }^{20}$ The m. p.s or b. p.s of the specimens used as solutes conformed to those cited in refs. 19 and 21-24. Benzene and carbon tetrachloride, as solvents, were given the standard pretreatment noted in ref. 25, p. 45; the dioxan was as used by Le Fèvre and Sundaram. ${ }^{26}$

Measurements and Results.-These are listed in Tables 1-3. Table 1 shows, for solutions each containing weight fractions w_{2} of solute in the solvent named, the differences, $\Delta n, \Delta n^{2}$

Table 2.
Total polarisations at infinite dilution, molecular refractions, and dipole moments calculated from Table 1.

Solute	M_{2}	$\alpha \varepsilon_{1}$	β	$\gamma^{1} n_{1}{ }^{2}$	∞P_{2} (c.c.)	$R_{\text {D }}$ obs. (c.c.)	μ^{*}
$\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$60 \cdot 1$	$5 \cdot 37$	$0 \cdot 0633$	-0.515	79.76	12.94	$1 \cdot 80$
$\mathrm{Cl} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots \ldots .$.	94.5	$6 \cdot 19$	$0 \cdot 2732$	-0.291	$133 \cdot 44$	17.77	$2 \cdot 37$
$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots \ldots . .$.	74-1	$4 \cdot 50$	0.0373	-0.447	86.88	17.56	1.83
$\mathrm{Et} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots \ldots .$.	88.1	$3 \cdot 47$	0.0361	-0.382	86.28	22.00	$1 \cdot 75{ }_{7}$
$\mathrm{Me}_{2} \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots$	$102 \cdot 1$	3.07	0.0135	-0.404	93-21	25.88	1.80
$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots$.	$136 \cdot 2$	$2 \cdot 78$	$0 \cdot 1979$	0.024	108.42	37.21	1.84
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	$194 \cdot 2$	4.54	0.2702	$0 \cdot 165$	213.92	53.55	$2 \cdot 78$
$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Ph}$.	198.2	$2 \cdot 19$	0.2396	$0 \cdot 162$	133.03	56.63	1.90
$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Et} \dagger$	$88 \cdot 1$	6.87	-0.7791	-0.472	92.77	$22 \cdot 31$	1.84
$\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2} \ddagger \ldots \ldots$.	118.1	$5 \cdot 68$	$0 \cdot 1479$	-0.027	138.61	$24 \cdot 20$	$2 \cdot 35$

[^1]Table 3.
Molar Kerr constants at infinite dilution calculated from Tables 1 and 2.

Solute	γ	δ	$10^{12} \infty\left({ }_{m} K_{2}\right)$	Solute	γ	δ	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$,
$\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$-0 \cdot 110$	$9 \cdot 29$	35.57	$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$0 \cdot 005$	$8 \cdot 80$	$85 \cdot 38$
$\mathrm{Cl} \cdot \mathrm{CO}_{2} \mathrm{Me}$	-0.062	12.85	76.80	$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$	0.037	3.05	$23 \cdot 67$
$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$-0 \cdot 100$	$5 \cdot 50$	25.00	$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Ph} \ldots$.	0.036	5.22	73.65
$\mathrm{Et} \cdot \mathrm{CO}_{2} \mathrm{Me}$	-0.085	$4 \cdot 40$	25.54	$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Et} * * \ldots .$.	$0 \cdot 109$	32.00	20.07
$\mathrm{Me}_{2} \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me} \ldots$	-0.089	$2 \cdot 73$	18.37	$\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2} \dagger \ldots .$.	-0.006	31.03	$40 \cdot 06$

$\Delta d, \Delta \varepsilon$, and ΔB between the refractive indexes, the squares of the refractive indexes, the densities, the dielectric constants, and the Kerr effects, respectively, of the solutions and the solvent. For the pure solvents (i.e., when $w_{2}=0$), the physical properties named have the values given in refs. $14 b$ or c, and 26. All measurements were at 25°. Polarisations, dipole moments, molar Kerr constants, etc., deduced from Table 1 follow as Tables 2 and 3. Definitions of symbols and explanations of the calculations employed are in refs. $14 b$ and c; a brief summary is also in ref. 26.

Discussion

Previous Measurements.-Dipole moments for six of the ten substances listed in Table 2 have been reported previously. The literature since 1948 contains values given in Table 4. Measurements reported before 1948 are listed by Wesson; ${ }^{31}$ they comprise only methyl chloroformate, methyl acetate, methyl propionate, methyl benzoate, phenyl benzoate,

Table 4.
Dipole moments published since 1948.

Solute	Solvent	μ (D)	Ref.	Solute	Solvent	μ (D)	Ref.
$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	1.45	27	$\mathrm{Et} \cdot \mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	1.73	30
	,	1.61	28	,	1,4-Dioxan	1.72	,,
$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Me}$		1.70	27	,',	Toluene	$1 \cdot 64$	
$\mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Et}$	CCl_{4}	1.81	29	,	$\begin{aligned} & \mathrm{CHCl}_{3} \\ & \mathrm{BuOAc} \end{aligned}$	$\begin{aligned} & 1.40_{7} \\ & 0.58_{3} \end{aligned}$	
				,			

and ethyl acetate in various solvents and at various temperatures. The values given differ considerably among themselves; their ranges are noted in Table 5. Wesson's tables contain no entry for methyl formate, methyl isobutyrate, dimethyl phthalate, or

Table 5.
Dipole moments (D) published before 1948.
$\mathrm{Cl}^{2} \cdot \mathrm{CO}_{2} \mathrm{Me} 2 \cdot 22 ; \mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Me} 1 \cdot 67-2 \cdot 2 ; \mathrm{Et} \cdot \mathrm{CO}_{2} \mathrm{Me} 1 \cdot 65_{7}-1 \cdot 73_{5} ; \mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Me} 1 \cdot 80-2.52$;
$\mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{Ph} 1.80-1.92 ; \mathrm{Me} \cdot \mathrm{CO}_{2} \mathrm{Et} 1.74-2 \cdot 00$.
dimethyl oxalate. In several instances the moments given in Table 2 disagree with those in Tables 4 and 5 , probably because of the paucity of solutions examined during these earlier determinations; it is not that different approximations for distortion polarisations have been made. Curl's estimate ${ }^{8}$ of $\mu=1.77 \mathrm{D}$ from microwave studies of methyl formate compares satisfactorily with that now obtained (1.80 D) by the dielectric-constant method; the same is not true for the microwave results for methyl acetate (1.58 D) or benzoate (1.69 D). Although strictly not relevant, the electric birefringences, relatively to carbon disulphide, for ethyl acetate and methyl benzoate as pure liquids are quoted in Vol. VII of ref. 22.

[^2]Dipole Moments and Conformations.-The moments listed in Table 2 are consistent with a general non-planarity of the group CO•OR: let inter-bond angles be taken as in Sutton's tables, ${ }^{12}$ polarity components ${ }^{31,32}$ of $2 \cdot 8_{0} \mathrm{D}$ and $1 \cdot 2_{8} \mathrm{D}$ be attributed to the $\mathrm{C}=\mathrm{O}$ link and the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ triangle, respectively, and the moments of $\mathrm{H}-\mathrm{C}$ bonds be regarded as negligibly small; the observed resultants, via the usual equation, $\mu_{\text {resultant }}^{2}=(2 \cdot 80)^{2}+$ $(1.28)^{2}+2 \times 1.28 \times 2.80 \cos \theta$, show the two components to interact in all cases within the range $147-153^{\circ}$ (Table 6). The direction of action of $\mu_{\text {resultant }}$ in the space formula

Table 6.
Angles of interaction between $\mu_{\mathrm{C} \cdot \mathrm{O}^{\circ} \mathrm{C},}, \mu_{\mathrm{C}=0}$, and $\mu_{\text {resultant }}$.

Ester	Angle θ between $\mu_{\mathrm{C}} \cdot \mathrm{O} \cdot \mathrm{C}$ and $\mu_{\mathrm{O}}=0$	Angle α between $\mu_{\mathrm{C}=\mathrm{o}}$ and $\mu_{\text {resultant }}$	Ester	Angle θ between $\mu_{\mathrm{C}} \cdot 0 \cdot \mathrm{C}$ and $\mu_{\mathrm{C}}=0$	Angle α between $\mu_{\mathrm{C}=0}$ and $\mu_{\text {resultant }}$
H-CO-OMe...	150.5°	$20.5{ }^{\circ}$	Et-CO.OMe	$153.0{ }^{\circ}$	$19 \cdot 3{ }^{\circ}$
$\mathrm{Me} \cdot \mathrm{CO} \cdot \mathrm{OMe}$	148.8	$21 \cdot 1$	$\mathrm{Me}_{2} \mathrm{CH} \cdot \mathrm{CO} \cdot \mathrm{OMe}$	$150 \cdot 5$	$20 \cdot 5$
$\mathrm{Me} \cdot \mathrm{CO} \cdot \mathrm{OEt}$	$147 \cdot 0$	$22 \cdot 6$	$\mathrm{Ph} \cdot \mathrm{CO} \cdot \mathrm{OMe}$	148.2	21.5

of any of the esters then follows from the relation: $\tan \alpha=1 \cdot 28 \sin \theta /(2 \cdot 8+1 \cdot 28 \cos \theta)$, where α is the angle between $\mu_{\text {resultant }}$ and $\mu_{\mathrm{C}=0}$. (With ethyl acetate, for which the solvent is carbon tetrachloride, 1.32 D , i.e., $\mu_{\mathrm{Me}_{4} \mathrm{O}}$ in this medium, ${ }^{32}$ has been used instead of $1 \cdot 2_{8} \mathrm{D}$, the apparent moment of $\mathrm{Me}_{2} \mathrm{O}$ in benzene.) The values of θ and α so obtained are of interest for their near-constancy, suggesting no great difference in the non-planarities of $\mathrm{CO}_{2} \mathrm{R}$ from ester to ester; they are roughly those expected if the $\mathrm{C}-\mathrm{O}-\mathrm{R}$ triangle is raised out of the flat configuration by a rotation of $c a .30^{\circ}$ about the $\mathrm{C}-\mathrm{O}$ bond, i.e., if the conformations of esters as solutes resemble those described in refs. 11-13 for esters as gases.

Molar Kerr Constants and Conformations.-This subject is approached generally as follows: The principal axes of polarisability b_{1}, b_{2}, and b_{3} are calculated (by the method outlined on p. 2486 of ref. $14 c$ or p. 3 of ref. 15, and fully described in ref. 33) for alternative conformations, from the known ${ }^{12}$ geometrical specifications of such structures and the accepted longitudinal, transverse, and "vertical" polarisabilities ($b_{\mathrm{L}}^{\mathrm{XY}}, b_{\mathrm{T}}^{\mathrm{XY}}$, and b^{XY}) of the various bonds $\mathrm{X}-\mathrm{Y}$. The values of the last ${ }^{14 b-d, 15}$ are:

	b_{L}	b_{T}	b_{V}	
$\mathrm{C}-\mathrm{H}$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	0.064	0.064	0.064
$\mathrm{C}-\mathrm{O}$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	0.081	0.039	0.039
$\mathrm{C}=\mathrm{O}$	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	0.230	0.140	0.046

(Here, and elsewhere, polarisabilities b_{i} are quoted as 10^{-23} c.c. units.) In conjunction with estimates of the directions of action of the molecular resultant dipole moments, the molar Kerr constants are then deduced (from the equations given, e.g., on p. 2480 of ref. $14 c$ or p .2 of ref. 15) for the models under consideration and compared with the $\infty\left({ }_{\mathrm{m}} K_{2}\right)$'s observed.
(I)

(II)

(III)

Methyl formate, chloroformate, and acetate are simple cases in which rotational isomers can only be due to the relative orientations of the $\mathrm{C}=\mathrm{O}$ and OMe groups. Four forms are therefore investigated: A and B, both planar, in which the $\mathrm{O}-\mathrm{Me}$ and carbonyl bonds lie, respectively, cis and trans to one another, C in which the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangle has been rotated (about the $\mathrm{C}-\mathrm{O}$ line) 90° above the plane containing it in A , and D as C but after a rotation of 30°. Inter-bond angles are taken in all conformations to be as shown in (I)-(III) for the cis-flat structures (cf. ref. 12). The mutually perpendicular axes

[^3]X, Y, and Z (used to define the locations of b_{1}, b_{2}, and b_{3} and μ_{1}, μ_{2}, and μ_{3}) are chosen so that $\mathrm{C}=\mathrm{O}$ is parallel to X, and Y is at 90° to X in the $\mathrm{O}=\mathrm{C}-\mathrm{O}$ plane.

Results of calculations are summarised in Table 7. With methyl chloroformate the
Table 7.
Polarisability semi-axes, moment components, etc., for methyl formate, chloroformate, and acetate.

Conformation type	Principal semi-axes *	Direction cosines with			Dipole moment components (D) *		$10^{12}{ }_{\mathrm{m}} K$ calc.
		X	Y	Z			
Methyl formate							
A	$0.589{ }_{5}$	1	0	0	1.80		
	0.532_{5}	0	1	0	0	\}	$49 \cdot 45$
	$0 \cdot 380_{0}$	0	0	1	0	,	
B	$0 \cdot 617_{5}$	1	0	0	$1 \cdot 80$)	
	$0.504{ }_{4}$	0	1	0	0	\}	$64 \cdot 8$
	$0.380{ }_{0}$	0	0	1	0)	
C	0.5808	0.9834	-0.1796	0.0251	$1 \cdot 16$		
	0.510_{0}	$0 \cdot 1735$	0.9213	$0 \cdot 3480$	$0 \cdot 67$	$\}$	-1.72
	$0.411{ }_{4}$	-0.0529	-0.3448	0.9372	-1.20	,	
D	0.5872	0.9966	-0.0693	0.0448	$1 \cdot 65$)	
	$0 \cdot 526{ }_{7}$	0.0637	0.9912	$0 \cdot 1161$	0.033	\}	$30 \cdot 8$
	$0 \cdot 388$	-0.0524	-0.1128	0.9922	-0.723	,	
Methyl chloroformate							
A	$0 \cdot 727$	0.7278	-0.6858	0	$2 \cdot 11$		
	$0 \cdot 807$	0.6858	0.7278	0	-1.08	\}	$52 \cdot 9$
	0.536	0	0	1	0	,	
A^{\prime}	$0 \cdot 700$	0.8790	-0.4772	0	1.775		
	$0 \cdot 878$	0.4772	0.8790	0	-1.570	\}	$84 \cdot 7$
	0.501	0	0	1	0	,	
D	$0 \cdot 702$	0.8780	-0.4787	0.0072	1.75)	
	$0 \cdot 866$	0.4777	0.8770	0.0512	-1.56	\}	$75 \cdot 5$
	0.511	-0.0308	-0.0415			,	
Methyl acetate							
A	$0 \cdot 781$	0.7840	$0 \cdot 6205$				
	$0 \cdot 724$	$0 \cdot 6205$	-0.7840	0	$-1 \cdot 13_{6}$	\}	$46 \cdot 3$
	0.535	0	0	1	0	,	
B	$0 \cdot 787$						
	$0 \cdot 718$	0.0523	-0.9986	0	$-0.09{ }_{6}$	\}	$62 \cdot 0$
	0.535	0	0	1	0	,	
C	$0 \cdot 766$	0.7889	$0 \cdot 6000$	$0 \cdot 1327$	$1 \cdot 18$,	
	$0 \cdot 716$	-0.6016	0.7891	$0 \cdot 1237$	$0 \cdot 60$	\}	$-8 \cdot 62$
	$0 \cdot 558$	-0.1253	-0.1312	0.9834	$-1.26{ }_{5}$		
$\mathrm{D} \dagger$	$0 \cdot 773$	0.8767	0.4752	0.0744	$1 \cdot 34_{2}$)	
	$0 \cdot 722$	-0.4737	0.8799	-0.0376	$1.02{ }_{4}$	\}	$25 \cdot 9$
	$0 \cdot 544$	-0.0833	-0.0023	0.9965	-0.70_{4}		

* Polarisability semi-axes and dipole moment components listed in descending orders as b_{1}, b_{2}, and b_{3}, and μ_{1}, μ_{2}, and μ_{3}. $\dagger X$ and Y in the plane of the acetyl group, X parallel to the C-C link.
trans-conformation has not been considered since its existence appears most improbable from the magnitude of μ observed. The two computations, A and A^{\prime}, for this ester differ in that, with A , the polarisabilities of $\mathrm{C}-\mathrm{Cl}$ are as in methyl chloride ${ }^{15}$ while with A^{\prime} they are as in chloroform, vinylidene dichloride, etc. Since the ${ }_{m} K$'s calc. on the methyl chloride basis for conformations of type A, C, or D are all less than that observed, the alternative values ($b_{\mathrm{L}}^{\mathrm{COl}}=0.399, b_{\mathrm{T}}^{\mathrm{COl}}=b_{\mathrm{V}}^{\mathrm{COl}}=0 \cdot 185$) are evidently more appropriate and have been used.

Comparisons between the ${ }_{\mathrm{m}} K^{\prime}$'s predicted (Table 7) and those observed (Table 3) show that for each ester an " effective" conformation of type D provides near-agreement with experiment. Small variations of the angle between 30° and 25° could improve the 6 L
concordance, but in view of the assumptions underlying the calculations the point is not stressed; we consider it satisfactory that we estimate the non-planarity of methyl formate and acetate as within the limits given by electron diffraction, ${ }^{11}$ and only 10° different from that (20°) reported ${ }^{12}$ for methyl chloroformate by the same method.

Methyl propionate presents the additional problem of the conformation of its $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ bond, so that theoretically four flat extreme forms should be considered. However, the two having $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{CH}_{3}$ mutually trans can be eliminated on polarity grounds, leaving structures (IV) and (V); in Table 8 these are designated A and A^{\prime}, respectively, while D

indicates structure (IV) in which the methyl group is raised above the $\mathrm{O}=\mathrm{C}-\mathrm{O}$ plane by the 30° rotation already prescribed for (I)-(III). Again, a conformation of type D appears satisfactory, ${ }_{\mathrm{m}} K$ calc. being 27.1×10^{-12}, and ${ }_{\mathrm{m}} K$ observed 25.5×10^{-12}.

Table 8.
Polarisability semi-axes, moment components, etc., for three conformations of methyl proprionate.

$\begin{gathered} \text { Conformation } \\ \text { type } \end{gathered}$	Principal semi-axes *	Direction cosines \dagger with			Dipole moment components (D)	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
		X	Y	Z		
A	$\begin{aligned} & 0.948_{5}^{5} \\ & 0.9377_{7} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.75_{7} \\ & 0 \\ & 0 \end{aligned}$	$48 \cdot 95$
A^{\prime}	$0 \cdot 690_{8}$ 0.9849 0.901_{3} 0.690	$\begin{aligned} & 0.9981 \\ & 0.01010 \end{aligned}$ 0	$\begin{gathered} 0 \\ 0.0610 \\ -0.9981 \\ 0 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 0 \\ 1.75_{4} \\ -0.10_{7} \\ 0 \end{gathered}$	67.7
D	$\begin{aligned} & 0.952_{3} \\ & 0.924{ }_{7} \\ & 0.700_{0} \end{aligned}$	$\begin{array}{r} 0.8732 \\ 0.4853 \\ -0.0437 \end{array}$	$\begin{array}{r} -0.4873 \\ 0.8706 \\ -0.0686 \end{array}$	$\begin{aligned} & 0.0047 \\ & 0.0812 \\ & 0.9967 \end{aligned}$	$\begin{array}{r} 1.42_{6} \\ 0.74_{2} \\ -0.711_{0} \end{array}$	$27 \cdot 1$

With methyl isobutyrate, in which the CO•OMe group has internally a cis-arrangement, three extreme forms are possible, one (VI) in which the Me \cdots Me line is parallel to the plane of the $\mathrm{O}=\mathrm{C}-\mathrm{O}$ triangle, and two (VII) and (VIII) in which it is perpendicular to it.

(VI)

(VIII)

For identification in Table 9 , forms with the cis-planar arrangement of $\mathrm{CO} \cdot \mathrm{OMe}$ are designated type A , and forms in which the $\mathrm{O}-\mathrm{Me}$ has undergone a 30° rotation are shown as type D with an indication of the flat form (i.e., either VI, VII, and VIII) from which they are generated.

It is seen that the ${ }_{\mathrm{m}} K^{\prime}$'s calc. for (VI)-(VIII), in which the CO•OMe groups are planar, all exceed the ${ }_{\mathrm{m}} K$ observed. Twisting the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ plane in (VIII) about the $\mathrm{C}-\mathrm{O}$ bond by 30° leads to an ${ }_{\mathrm{m}} K$ calc. in good agreement with that found; twisting that in (VII) by ca. 20° does the same. However, because models suggest steric hindrances between the

Table 9.
Semi-axes, component moments, etc., calc. for methyl isobutyrate.

Conformation types A(VI)	Principal semi-axes *	Direction cosines \dagger with			Dipole moment components (D) *	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
		X	Y	Z		
	1.094	0.9976	-0.0698	0	1.01	
	1-127	$0 \cdot 0698$	0.9976	0	$1 \cdot 49$	$44 \cdot 6$
	0.893	0	0	1	0	
D(VI)	1.077	0.9113	-0.4079	-0.0568	$0 \cdot 22$	
	$1 \cdot 133$	$0 \cdot 4081$	0.9129	-0.0087	1.67	$38 \cdot 2$
	0.903	$0 \cdot 0554$	-0.0153	0.9984	-0.62	
A(VII)	1.085	1	0	0	1.80	
	1.087	0	1	0	0	26.3
	0.942	0	0	1	0	
D(VII)	1.085	0.8127	0.6586	$0 \cdot 1270$	1.29	
	1.081	-0.5780	$0 \cdot 8143$	$0 \cdot 0529$	1.01	$12 \cdot 75$
	0.948	-0.0733	-0.1164	0.9905	$0 \cdot 75$	
A(VIII)	1.124	0.9397	0.3420	0	1.69	
	1.048	$0 \cdot 3420$	-0.9397	0	$0 \cdot 62$	37.05
	0.942	0	0	,	0	
D(VIII)	1-119	0.8055	0.5890	0.0648	1.31	
	1.047	-0.5916	0.8056	0.0315	-1.02	$18 \cdot 7$
	0.948	-0.0336	-0.0637	0.9974	-0.69	

* See footnotes to Table 7. \dagger Directions of X, Y, and Z are indicated in (VI)-(VIII).
methyl groups and the ketonic oxygen in (VII), and because 30° seems a generally satisfactory angle in esters, we prefer form D (VIII) as a representation of the effective conformation of methyl isobutyrate. We cannot eliminate the possibility of the solute's being a mixture of forms, e.g., of (VI)D and (VIII)D, which in suitable proportions could also produce an ${ }_{\mathrm{m}} K$ of 18.4×10^{-12}; at the same time, we know of no evidence against this dissolved substance's being a single form.
(IX)

The magnitude of the dipole moment of methyl benzoate rotation the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ plane around $\mathrm{C}-\mathrm{O}$ by 30° is cited as $\mathrm{D}(\mathrm{IX})$. We assume that, through resonance, the $\mathrm{C}=\mathrm{O}$ bond is coplanar with the phenyl ring, in which case $\mathrm{D}(\mathrm{IX})$ appears as the " effective" conformation (${ }_{\mathrm{m}} K$ calc. $89.5 \times$ 10^{-12}, observed 85.4×10^{-12}).

Table 10.
Semi-axes, component moments, etc., for methyl benzoate.

Conformation types	Principal semi-axes	Direction cosines with*			Dipole moment components (D)	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
		X	Y	Z		
A(IX)	1.634	1	0	0	1.81	
	1.598	0	1	0	$1 \cdot 65$	124.5
	1.014	0	0	1	0	
D (IX)	1.636	0.8746	$0 \cdot 4841$	0.0276	1.40	
	1.586	-0.4839	$0 \cdot 8750$	-0.0122	1.00	89.5
	1.023	-0.0300	-0.0028	0.9995	-0.66	
	* See footnotes to previous Tables.					

With dimethyl phthalate the problems are multiplied. Scale models indicate that a completely planar form is sterically impossible. In addition, $10{ }^{12}{ }_{\mathrm{m}} K$ calc. for (X) is 472 , and for (XI) is $33 \cdot 5$, which both exceed 23.7 as measured, and the moment observed $(2 \cdot 78 \mathrm{D})$ is much higher than would be expected for (XI). Models suggest the feasibility of structures (XII) and (XIII) (not illustrated) in which the two $\mathrm{CO}_{2} \mathrm{Me}$ groups are twisted
in opposite or the same directions, respectively, so that their planes are perpendicular to the Ar ring; (XII) would agree with $\mu_{\text {observed }}$ but corresponds to an ${ }_{\mathrm{m}} K$ of $\mathbf{6 5 \cdot 1} \times 10^{-12}$, while (XIII) requires a dipole moment larger than that measured and leads to an algebraically negative ${ }_{\mathrm{m}} K\left(-26 . \mathbf{7}_{5} \times 10^{-12}\right)$. Although either (XII) or (XIII) alone is unsatisfactory, their coexistence in a mixture could account for the experimental observ-

ations. We add, however, that a single conformation (XIV, not illustrated) can be devised, which is satisfactory (although not unique); it is generated from a model in which one CO_{2} triangle (a) is in the plane of the $\mathrm{C}_{6} \mathrm{H}_{4}$ ring and the other CO_{2} (b) perpendicular to it; (a) and (b) are twisted about their $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}$ bonds (looking from C_{Ar} to the $\mathrm{C}_{\mathrm{C}=\mathrm{O}}$) respectively 15° and 5° clockwise; both methoxycarbonyl groups are made non-planar by 30° rotation (also clockwise, looking from C to O) about their $\mathrm{C}-\mathrm{O}$ bonds. The calculated ${ }_{\mathrm{m}} K$ (Table 11) is then 25.7×10^{-12} (observed, 23.7×10^{-12}).

Table 11.

Conformation(X)	Semi-axes, component moments, etc., for dimethyl phthalate.					
	Principal semi-axes	Direction cosines with *			Dipole moment components	$10^{12}{ }_{\mathrm{m}} K$ calc.
		X	Y	Z		
	$2 \cdot 253$	1	0	0	$2 \cdot 52$	
	1.971	0	1	0	0	471.8
	1.294	0	0	1	0	
(XI)	2.091	1	0	0	$0 \cdot 2$	
	$2 \cdot 133$	0	1	0	0	$35 \cdot 2$
	1.294	0	0	1	0	
$(\mathrm{XII}) \dagger$	1.970	1	0	0	1.41	
	1.776	0	1	0	0	$65 \cdot 1$
	1.772	0	0	1	0	
$(\mathrm{XIII}) \dagger$	1.972	0.9951	0	0.0993	1.52	
	1.776	0	1	0	0	-26.75
	1.770	-0.0993	0	0.9951	$2 \cdot 63$	
$(\mathrm{XIV}) \dagger$	2.067	0.9961	0.0332	0.0818	0.89	
	1.928	-0.0329	0.9993	0.0180	$2 \cdot 28$	$25 \cdot 7$
	1.523	-0.0820	-0.0175	0.9965	$1 \cdot 33$	

* X and Y in the $\mathrm{C}_{6} \mathrm{H}_{4}$ plane, with Y passing through the carbons ortho to each $\mathrm{CO}_{2} \mathrm{Me}$ group.
\dagger For explanation of these conformations see the cursive text.

Table 12 summarises calculations for three conformations of phenyl benzoate, (XV) which is flat, (XVI) in which the phenoxyphenyl is perpendicular to the plane of (XV), and (XVII) (not illustrated) produced by a 70° rotation of the phenoxyphenyl group.
(XV)

(XVI)

As with methyl benzoate, we consider the benzoyl group to be planar through conjugation. A conformation such as (XVII) appears adequate (${ }_{\mathrm{m}} K$ calc. $\mathbf{7 6 \cdot 4} \times 10^{-12}$; obs. $73 \cdot \mathbf{6}_{\mathbf{5}} \times$
10^{-12}), although others (not examined) in which the phenoxy-group is lifted from the benzoyl plane and the phenyl ring twisted less than 70° might also satisfy the requirements.

Dipole-moment measurements on ethyl acetate favour a cis- rather than a transarrangement of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{Et}-\mathrm{O}$ bonds, but give no guide to the internal conformation

Table 12.

Conformation (XV)	Principal semi-axes	Direction cosines with *			Dipole moment	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
		X	Y	Z	components	
	$2 \cdot 499$	1	0	0	0.83	
	$2 \cdot 462$	0	1	0	1.71	$239 \cdot 0$
	1.493	0	0	1	0	
(XVI)	$2 \cdot 503$	0.9871	-0.1599	0	0.55	
	$2 \cdot 072$	$0 \cdot 1599$	0.9871	0	1.82	$-10 \cdot 2$
	1.878	0	0	1	0	
$(\mathrm{XVII}) \dagger$	$2 \cdot 504$	0.9856	$0 \cdot 1689$	0.0087	$1 \cdot 11$	
	$2 \cdot 163$	-0.1611	0.9222	0.3514	1.44	76.45
	1.787	0.0513	-0.3478	0.9362	-0.554	

* X and Y in the plane of the benzoyl group, X being parallel to the $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}$ bond. \dagger For conformation (XVII) see cursive text.
of the ethyl group. Extreme planar forms of the s-cis-molecule are (XVIII) and (XIX); from these, non-planar variants can be derived in two ways: (a) by keeping the $\mathrm{Me}-\mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{C}$ flat and rotating the $\mathrm{C}-\mathrm{CH}_{3}$ around a cone, or (b) by keeping the $\mathrm{Me} \cdot \mathrm{CO} \cdot \mathrm{O}$ flat and rotating both the $\mathrm{O}-\mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ units as two different cones. The process (b) involves complicated polarisability calculations, the difficulties of which are, however,

reduced if in ethyl acetate the skeletal conformation of methyl acetate (see above) is retained and a (b)-type non-planar version of (XVIII) thus created. We note that Karpovich, ${ }^{34}$ from acoustic relaxation measurements, concluded that rotations about $\mathrm{C}-\mathrm{O}$ occur in this ester, but he did not propose any particular angle. We suggest therefore that the extra $\mathrm{C}-\mathrm{C}$ linkage be added to methyl acetate so that it lies approximately parallel to the $\mathrm{Ac}-\mathrm{O}$ bond in a plane which itself is parallel to that containing $\mathrm{Me} \cdot \mathrm{CO} \cdot \mathrm{O}$. Scale models indicate that rotations of $\mathrm{CH}_{2}-\mathrm{CH}_{3}$, about the $\mathrm{O}-\mathrm{CH}_{2}$ axis, by more than $c a$. $\pm 30^{\circ}$ from this position are unlikely because of interactions between the carbonyloxygen and the methylene-hydrogen atoms. Table $\mathbf{1 3}$ contains the relevant calculations;

Table 13.

Conformation (XVIII)	Semi-axes, component moments, etc., for ethyl acetate.					$10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
	Principal semi-axes	Direction cosines with *			Dipole moment components	
		X	Y	Z		
	0.940	1	0	0	1.84	
	0.946	0	1	0	0	47-1
	$0 \cdot 691$	0	0	1	0	
(XIX)	0.982	1	0	0	$1 \cdot 84$	
	0.904	0	1	0	0	72-4
	$0 \cdot 691$	0	0	1	0	
(XVIIIb)	0.928	$0 \cdot 8300$	0.5531	0.0715	1.43	
	0.949	-0.5523	$0 \cdot 8330$	-0.0328	0.895	$24 \cdot 1$
	0.699	-0.0777	-0.0122	0.9969	-0.735	

* X and Y in the $\mathrm{Me} \cdot \mathrm{CO}_{2}$ plane, with X parallel to the $\mathrm{C}=\mathrm{O}$ bond.
${ }^{34}$ Karpovich, J. Chem. Phys., 1953, 21, 1120; 1954, 22, 1767.
the (b)-type modification of (XVIII) leads to an ${ }_{\mathrm{nn}} K\left(24 \cdot 1 \times 10^{-12}\right.$) close to that observed $\left(20 \cdot 1 \times 10^{-12}\right)$.

Literature references to the nature of dimethyl oxalate suggest that in the crystal this molecule adopts a trans-conformation ${ }^{7,35}$ whereas in the liquid or gaseous state cisand trans-forms coexist. ${ }^{36}$ Owing to its negligible solubility in benzene our measurements were made with dioxan as solvent, the dipole moment and the molar Kerr constant found being $2 \cdot 3_{5} \mathrm{D}$ and 40.1×10^{-12}, respectively. Corresponding values determined earlier ${ }^{16}$ for diethyl oxalate in carbon tetrachloride are $2.4_{1} \mathrm{D}$ and 45.4×10^{-12}. The non-zero magnitudes of these moments show, of course, that neither ester as a solute exists alone as a flat trans-arrangement. Table 14 presents calculations for the following forms: flat trans (XX), flat cis (XXI), and two non-planar variants of the last, viz., (XXII) and (XXIII); in (XXII) the $\mathrm{CO}_{2} \mathrm{Me}$ groups are each flat but their planes are twisted in opposite senses about the central $\mathrm{C}-\mathrm{C}$ bond by 31°; in (XXIII) the $\mathrm{CO}_{2} \mathrm{Me}$ groups are assumed to be internally non-planar by the 30° rotations found satisfactory above with,

(XX)

(XXI)
e.g., methyl acetate, and these non-planar $\mathrm{CO}_{2} \mathrm{Me}$ groups are themselves rotated by $\pm 30^{\circ}$ from that conformation in which the carbonyl bonds are fully cis to one another [as given, this description of (XXIII) leads to two models in which the Me \cdot. Me distances are different; the calculation in Table 14 is for the form with the greater $\mathrm{Me} \cdots$ Me separation; the other form requires $\mu_{\text {calc. }} \mathbf{3 \cdot 1 2} \mathrm{D}$, which exceeds that observed].

Table 14.
Semi-axes, component moments, etc., for dimethyl oxalate.

Conformation$(\mathrm{XX})^{*}$	Principal	Direction cosines with			Dipole moment components	$10{ }^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc.
	semi-axes	X	Y	Z		
	1-105	0.9563	$0 \cdot 2924$	0		
	1.009 0.659	-0.2924 0	0.9563 0	0 1	0	8.24
$(\mathrm{XXI}) \dagger$	1.071	1	0	0	$2 \cdot 49$	
	1.043	0	1	0	0	$228 \cdot 2$
	0.659	0	0	1	0	
$(\mathrm{XXII}) \dagger$	0.965	1	0	0	$2 \cdot 47$	
	1.039	0	1	0	0	$44 \cdot 0$
	0.769	0	0	1	0	
(XXIII) \dagger	0.966	1	0	0	$2 \cdot 35$	
	1.032	0	1	0	0	$40 \cdot 8$
	0.775	0	0	1	0	

* X and Y in the molecular plane, X parallel to the $\mathrm{C}=\mathrm{O}$ links. $\dagger Y$ axis parallel to the central $\mathrm{C}-\mathrm{C}$ bond, X at 90° to Y and lying midway between the planes containing the $\mathrm{C}=\mathrm{O}$ bonds (cf. cursive text).

Table 14 shows that only conformations (XXII) and (XXIII) are in harmony with both the dipole moment and the molar Kerr constant found by experiment; that the dissolved species is a mixture of (XX) and (XXI), as supposed by Mihazawa and by Saksena, ${ }^{36}$ appears unlikely, since the proportions necessary to achieve the observed $\mu_{\text {resaltant }}$ would correspond to an ${ }_{\mathrm{m}} K$ which is too high or, alternatively, those giving the correct ${ }_{\mathrm{m}} K$ would require an apparent moment which is too low. Of forms (XXII) or (XXIII), we prefer the latter because it contains methoxycarbonyl conformations which are consistent with those deduced above for other simple esters.
${ }^{35}$ Miyazawa and Kurantani, J. Chem. Soc. Japan, 1951, $72,804$.
${ }^{36}$ Miyazawa, J. Chem. Soc. Japan, 1954, 75, 540; Saksena, Proc. Indian Acad. Sci., 1940, A, 12,

Conclusion.-It seems highly probable that the alkoxycarbonyl group occurs generally as a non-planar modification of a planar s-cis-precurser, in which the $\mathrm{O}-\mathrm{C}$ bond of the O-Alkyl group is in a plane which contains the other $\mathrm{C}-\mathrm{O}$ bond and is itself inclined $\mathrm{ca} .30^{\circ}$ to that in which the $\mathrm{O}-\mathrm{C}=\mathrm{O}$ triangle lies. This angle defines "effective conformations"; it is not meant to deny the possibility of moderate amplitudes of rotatory oscillation of the OR groups, as allowed by electron-diffraction studies. Thus polarity and polarisability indications are that esters as solutes have conformations resembling those adopted by esters as gases.

Grateful acknowledgment is made to the University of Sydney for the award of an "A. E. and F. A. Q. Stephens Postgraduate Research Fellowship" to A. S.

[^0]: ${ }^{1}$ Eucken and Meyer, Phys. Z., 1929, 30, 397.
 ${ }^{2}$ Zahn, Phys. Z., 1932, 33, 730.
 ${ }^{3}$ Marsden and Sutton, J., 1936, 1383.
 ${ }^{4}$ Mizushima and Kubo, Bull. Chem. Soc. Japan, 1938, 13, 174.
 ${ }^{5}$ O'Gorman, Shand, and Schomaker, J. Amer. Chem. Soc., 1950, 72, 4222.
 6 Ukaji, Bull. Chem. Soc. Japan, 1959, 32, 1275.
 ${ }^{7}$ Dougill and Jeffry, Acta Cryst., 1953, 6, 831.
 ${ }^{8}$ Curl, J. Chem. Phys., 1959, 30, 1529.
 ${ }^{9}$ Walton and Hughes, J. Amer. Chem. Soc., 1957, '79, 3985.
 ${ }_{10}$ Josien, 19th Congr. groupe avance méthods anal. spectrog. prod. mét., 1956, p. 265.
 ${ }_{11}$ Allen and Sutton, Acta Cryst., 1950, 3, 46.
 12 Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.
 ${ }^{13}$ Smyth, " Dielectric Behaviour and Structure," McGraw-Hill, New York, 1955, p. 308.

[^1]: 14 Le Fèvre and Le Fèvre, (a) J., 1953, 4041; (b) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261 ; (c) Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, 3rd edn., Vol. I, p. 2459.
 ${ }^{15}$ Le Fèvre, Liversidge Lecture, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
 16 Le Fèvre, Le Fèvre, and Oh, Austral. J. Chem., 1957, 10, 218.
 ${ }^{17}$ Le Fèvre, Le Fèvre, and Parkins, $J ., 1960,1814$.
 18 Aroney, Le Fèvre, and Shu-Sing Chang, J., 1960, 3173.
 ${ }_{19}$ Weissberger, "Organic Solvents," Interscience Publ., Inc., New York, 2nd edn., 1955.
 ${ }^{20}$ Vogel, "Practical Organic Chemistry," Longmans, London, 3rd edn., 1956.
 ${ }^{21}$ Timmermans, " Physico-chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.

 22 International Critical Tables, McGraw-Hill, New York, 1926.
 ${ }^{23}$ Beilstein's "Handbuch der organischen Chemie."
 ${ }^{24}$ Huntress and Mulliken, "Identification of Pure Organic Compounds," John Wiley, New York, 1941.
 ${ }^{25}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{26}$ Le Fèvre and Sundaram, J., 1962, 1494.

[^2]: 27 Jatkar and Phansalkar, J. Univ. Poona Sci. Technol., 1953, 4, 45.
 ${ }_{29}^{28}$ Gopala Krishnan, Trans. Faraday Soc., 1957, 53, 767.
 ${ }_{29}$ Kapustin, J. Exp. Theor. Phys. (U.S.S.R.), 1947, 17, 30.
 ${ }^{30}$ Marchal and Lapp, J. Polymer Sci., 1958, $27,571$.
 ${ }^{31}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

[^3]: ${ }^{32}$ Aroney, Le Fèvre, and Saxby, $J ., 1962,2886$.
 ${ }_{33}$ Eckert and Le Fèvre, J., 1962, 1081.

